But the team never saw coordinated electrical patterns across the entire brain, which would indicate sophisticated brain activity or even consciousness. The researchers say that restarting brain activity might require an electrical shock, or preserving the brain in solution for extended periods to allow cells to recover from any damage they sustained while deprived of oxygen.
Sestan, whose team has used its technique to keep pig brains alive for up to 36 hours, has no immediate plans to try to restore electrical activity in a disembodied organ. Instead, his priority is to find out how long his team can maintain a brain’s metabolic and physiological functions outside the body. “It is conceivable we are just preventing the inevitable, and the brain won’t be able to recover,” Sestan says. “We just flew a few hundred metres, but can we really fly?”
The BrainEx system is far from ready for use in people, he adds, not least because it is difficult to use without first removing the brain from the skull.
Questions multiply
Nevertheless, the development of technology with the potential to support sentient, disembodied organs has broad ethical implications for the welfare of animals and people. “There isn’t really an oversight mechanism in place for worrying about the possible ethical consequences of creating consciousness in something that isn’t a living animal,” says Stephen Latham, a bioethicist at Yale who worked with Sestan’s team. He says that doing so might be ethically justifiable in some cases — for instance, if it enable scientists to test drugs for degenerative brain diseases on the organs, rather than people.
Gauging awareness in a brain outside a body would probably be difficult, given that the organ’s surroundings would differ so radically from its natural environment. “We could imagine that brain could be capable of consciousness,” says George Mashour, a neuroscientist at the University of Michigan in Ann Arbor who studies near-death experiences. “But it’s very interesting to think about what kind of consciousness, in the absence of organs and peripheral stimulation.”
The latest study also raises questions about whether brain damage and death are permanent. Lance Becker, an emergency-medicine specialist at the Feinstein Institute for Medical Research in Manhasset, New York, says that many physicians assume that even minutes without oxygen can cause irreversible harm. But the pig experiments suggest that the brain might stay viable for much longer than previously thought, even without outside support. “This paper throws a hand grenade into the middle of what the common beliefs are,” says Becker. “We may have vastly underestimated the ability of the brain to recover.”
That could have practical and ethical consequences for organ donation. In some European countries, emergency responders who cannot resuscitate a person after a heart attack will sometimes use a system that preserves organs for transplantation by pumping oxygenated blood through the body — but not the brain. If a technology such as BrainExbecomes widely available, the ability to extend the window for resuscitation could shrink the pool of eligible organ donors, says Stuart Youngner, a bioethicist at Case Western Reserve University in Cleveland, Ohio.
“There’s a potential conflict here between the interests of potential donors — who might not even be donors — and people who are waiting for organs,” he adds.
Far to go
In the meantime, scientists and governments are left to confront the legal and ethical quandaries related to the possibility of creating a conscious brain without a body. “This really is a no-man’s land,” says Koch. “The law will probably have to evolve to keep up.”
Koch wants a broader ethical discussion to take place before any researcher tries to induce awareness in a disembodied brain. “It is a big, big step,” he says. “And once we do it, it’s impossible to reverse it.”
Comments